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17. Independence and conditioning of events

Definition 112. Let A,B be two events in the same probability space.
(1) If P(B) != 0, we define the conditional probability of A given B as

P
(
A

∣∣B
)

:=
P(A∩B)

P(B)
.

(2) We say that A and B are independent if P(A∩B) = P(A)P(B). If P(B) != 0, then
A and B are independent if and only if P(A |B) = P(A) (and similarly with the
roles of A and B reversed). If P(B) = 0, then A and B are necessarily independent
since P(A∩B) must also be 0.

What do these notions mean intuitively? In real life, we keep updating probabilities
based on information that we get. For example, when playing cards, the chance that a
randomly chosen card is an ace is 1/13, but having drawn a card, the probability for the
next card may not be the same - if the first card was seen to be an ace, then the chance
of the second being an ace falls to 3/51. This updated probability is called a conditional
probability. Independence of two events A and B means that knowing whether or not A
occured does not change the chance of occurrence of B. In other words, the conditional
probability of A given B is the same as the unconditional (original) probability of A.

Example 113. Let Ω = {(i, j) : 1≤ i, j≤ 6} with p(i, j) = 1
36 . This is the probability space

corresponding to a throw of two fair dice. Let A = {(i, j) : i is odd} and B = {(i, j) : j is 1 or 6}
and C = {(i, j) : i + j = 4}. Then A∩B = {(i, j) : i = 1,3, or 5, and j = 1 or 6}. Then, it
is easy to see that

P(A∩B) =
6
36

=
1
6
, P(A) =

18
36

=
1
2
, P(B) =

12
36

=
1
3
.

In this case, P(A∩B) = P(A)P(B) and hence A and B are independent. On the other hand,

P(A∩C) = P{(1,3),(2,2)} =
1
18

, P(C) = P{(1,3),(2,2),(3,1)} =
1

12
.

Thus, P(A∩C) != P(A)P(C) and hence A and C are not independent.
This agrees with the intuitive understanding of independence, since A is an event that

depends only on the first toss and B is an event that depends only on the second toss.
Therefore, A and B ought to be independent. However, C depends on both tosses, and
hence cannot be expected to be independent of A. Indeed, it is easy to see that P(C |A) = 1

9 .

Example 114. Let Ω = S52 with pπ = 1
52! . Define the events

A = {π : π1 ∈ {10,20,30,40}}, A = {π : π2 ∈ {10,20,30,40}}.

Then both P(A) = P(B) = 1
13 . However, P(B |A) = 3

51 . One can also see that P(B |Ac) =
4
51 .

In words, A (respectively B) could be the event that the first (respectively second) card
is an ace. Then P(B) = 4/52 to start with. When we see the first card, we update the
probability. If the first card was not an ace, we update it to P(B |Ac) and if the first card
was an ace, we update it to P(B |A).

Caution: Independence should not be confused with disjointness! If A and B are disjoint,
P(A∩B) = 0 and hence A and B can be independent if and only if one of P(A) or P(B)
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equals 0. Intuitively, if A and B are disjoint, then knowing that A occurred gives us a lot of
information about B (that it did not occur!), so independence is not to be expected.

Exercise 115. If A and B are independent, show that the following pairs of events are also
independent.

(1) A and Bc.
(2) Ac and B.
(3) Ac and Bc.

Total probability rule and Bayes’ rule: Let A1, . . . ,An be pairwise disjoint and mutually
exhaustive events in a probability space. Assume P(Ai) > 0 for all i. This means that
Ai∩A j = /0 for any i "= j and A1∪A2∪ . . .∪An = Ω. We also refer to such a collection of
events as a partition of the sample space.

Let B be any other event.
(1) (Total probability rule). P(B) = P(A1)P(B |A1)+ . . .+P(An)P(B |An).
(2) (Bayes’ rule). Assume that P(B) > 0. Then, for each k = 1,2, . . . ,n, we have

P(Ak |B) =
P(Ak)P(B |Ak)

P(A1)P(B |A1)+ . . .+P(An)P(B |An)
.

PROOF. The proof is merely by following the definition.
(1) The right hand side is equal to

P(A1)
P(B∩A1)

P(A1)
+ . . .+P(An)

P(B∩An)
P(An)

= P(B∩A1)+ . . .+P(B∩An)

which is equal to P(B) since Ai are pairwise disjoint and exhaustive.
(2) Without loss of generality take k = 1. Note that P(A1 ∩B) = P(A1)P(B∩A1).

Hence

P(A1 |B) =
P(A1∩B)

P(B)

=
P(A1)P(B |A1)

P(A1)P(B |A1)+ . . .+P(An)P(B |An)

where we used the total probability rule to get the denominator. !

Exercise 116. Suppose Ai are events such that P(A1∩ . . .∩An) > 0. Then show that

P(A1∩ . . .∩An) = P(A1)P(A2 |A1)P(A3 |A1∩A2) . . .P(An |A1∩ . . .∩An−1).

Example 117. Consider a rare disease X that affects one in a million people. A medical
test is used to test for the presence of the disease. The test is 99% accurate in the sense that
if a person has no disease, the chance that the test shows positive is 1% and if the person
has disease, the chance that the test shows negative is also 1%.

Suppose a person is tested for the disease and the test result is positive. What is the
chance that the person has the disease X?

Let A be the event that the person has the disease X . Let B be the event that the test
shows positive. The given data may be summarized as follows.

(1) P(A) = 10−6. Of course P(Ac) = 1−10−6.
(2) P(B |A) = 0.99 and P(B |Ac) = 0.01.
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What we want to find is P(A |B). By Bayes’ rule (the relevant partition is A1 = A and
A2 = Ac),

P(A |B)=
P(B |A)P(A)

P(B |A)P(A)+P(B |Ac)P(Ac)
=

0.99×10−6

0.99×10−6 +0.01× (1−10−6)
= 0.000099.

The test is quite an accurate one, but the person tested positive has a really low chance
of actually having the disease! Of course, one should observe that the chance of having
disease is now approximately 10−4 which is considerably higher than 10−6.

Independence of three or more events:

Definition 118. Events A1, . . . ,An in a common probability space are said to be indepen-
dent if P(Ai1 ∩Ai2 ∩ . . .∩Aim) = P(Ai1)P(Ai2) . . .P(Aim) for every choice of m ≤ n and
every choice of 1≤ i1 < i2 < .. . < im ≤ n.

The independence of n events requires us to check 2n equations (that many choices of
i1, i2, . . .). Should it not suffice to check that each pair of Ai and A j are independent? The
following example shows that this is not the case!

Example 119. Let Ω = {0,1}n with pω = 2−n for each ω ∈ Ω. Define the events A =
{ω : ω1 = 0}, A = {ω : ω2 = 0} and C = {ω : ω1 +ω2 = 0 or 2}. In words, we toss a fair
coin n times and A denotes the event that the first toss is a tail, B denotes the event that the
second toss is a tail and C denotes the event that out of the first two tosses are both heads
or both tails. Then P(A) = P(B) = P(C) = 1

4 . Further,

P(A∩B) =
1
4
, P(B∩C) =

1
4
, P(A∩C) =

1
4
, P(A∩B∩C) =

1
4
.

Thus, A,B,C are independent pairwise, but not independent by our definition because
P(A∩B∩C) &= 1

8 = P(A)P(B)P(C).
Intuitively this is right. Knowing A does not given any information about C (similarly

with A and B or B and C), but knowing A and B tells us completely whether or not C
occurred! Thus is is right that the definition should not declare them to be independent.

Exercise 120. Let A1, . . . ,An be events in a common probability space. Then, A1,A2, . . . ,An
are independent if and only if the following equalities hold.

For each i, define Bi as Ai and Ac
i . Then

P(B1∩B2∩ . . .∩Bn) = P(B1)P(B2) . . .P(Bn).

Note: This should hold for any possible choice of Bis. In other words, the system of 2n

equalities in the definition of independence may be replaced by this new set of 2n equali-
ties. The latter system has the advantage that it immediately tells us that if A1, . . . ,An are
independent, then A1,Ac

2,A3, . . . (for each i choose Ai or its complement) are independent.

18. Independence and conditioning of random variables

Definition 121. Let X = (X1, . . . ,Xm) be a random vector (this means that Xi are random
variables on a common probability space). We say that Xi are independent if FX(t1, . . . , tm)=
F1(t1) . . .Fm(tm) for all t1, . . . , tm.
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Remark 122. Recalling the definition of independence of events, the equality FX(t1, . . . , tm)=
F1(t1) . . .Fm(tm) is just saying that the events {X1 ≤ t1}, . . .{Xm ≤ tm} are independent.
More generally, it is true that X1, . . . ,Xm are independent if and only if {X1 ∈A1}, . . . ,{Xm ∈
Am} are independent events for any A1, . . . ,Am ⊆ R.

Remark 123. In case X1, . . . ,Xm have a joint pmf or a joint pdf (which we denote by
f (t1, . . . , tm)), the condition for independence is equivalent to

f (t1, . . . , tm) = f1(t1) f2(t2) . . . fm(tm)

where fi is the marginal density (or pmf) of Xi. This fact can be derived from the definition
easily. For example, in the case of densities, observe that

f (t1, . . . , tm) =
∂m

∂t1 . . .∂tm
F(t1, . . . , tm) (true for any joint density)

=
∂m

∂t1 . . .∂tm
F1(t1) . . .Fm(tm) (by independence)

= F ′1(t1) . . .F
′
m(tm)

= f1(t1) . . . fm(tm).

When we turn it around, this gives us a quicker way to check independence.

Fact: Let X1, . . . ,Xm be random variables with joint pdf f (t1, . . . , tm). Suppose we can write
this pdf as f (t1, . . . , tm) = cg1(t1)g2(t2) . . .gm(tm) where c is a constant and gi are some
functions of one-variable. Then, X1, . . . ,Xm are independent. Further, the marginal density
of Xk is ckgk(t) where ck = 1R +∞

−∞ gk(s)ds
. An analogous statement holds when X1, . . . ,Xm have

a joint pmf instead of pdf.

Example 124. Let Ω = {0,1}n with pω = p∑ωk qn−∑ωk . Define Xk : Ω→R by Xk(ω) = ωk.
In words, we are considering the probability space corresponding to n tosses of a fair coin
and Xk is the result of the kth toss. We claim that X1, . . . ,Xn are independent. Indeed, the
joint pmf of X1, . . . ,Xn is

f (t1, . . . , tn) = p∑ tk qn−∑ tk where ti = 0 or 1 for each i≤ n.

Clearly f (t1, . . . , tm) = g(t1)g(t2) . . .g(tn) where g(s) = psq1−s for s = 0 or 1 (this is just
a terse way of saying that g(s) = p if s = 1 and g(s) = q if s = 0). Hence X1, . . . ,Xn are
independent and Xk has pmf g (i.e., Xk ∼ Ber(p)).

Example 125. Let (X ,Y ) have the bivariate normal density

f (x,y) =
√

ab− c2
√

2π
e−

1
2 (a(x−µ1)2+b(y−µ2)2+2c(x−µ1)(y−µ2)).

If c = 0, we observe that

f (x,y) = C0e−
a(x−µ1)2

2 e−
b(y−µ2)2

2 (C0 is a constant, exact value unimportant)

from which we deduce that X and Y are independent and X ∼N(µ1,
1
a ) while Y ∼N(µ2,

1
b ).

Can you argue that if c )= 0, then X and Y are not independent?

Example 126. Let (X ,Y ) be a random vector with density f (x,y) = 1
π 1x2+y2≤1 (i.e., it

equals 1 if x2 +y2 ≤ 1 and equals 0 otherwise). This corresponds to picking a point at ran-
dom from the disk of radius 1 centered at (0,0). We claim that X and Y are not independent.
A quick way to see this is that if I = [0.8,1], then P{(X ,Y )∈ [0.8,1]× [0.8,1]}= 0 whereas
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P{(X ,Y ) ∈ [0.8,1]}P{(X ,Y ) ∈ [0.8,1]} "= 0 (If X ,Y were independent, we must have had
P{(X ,Y ) ∈ [a,b]× [c,d]} = P{X ∈ [a,b]}P{Y ∈ [c,d]} for any a < b and c < d).

A very useful (and intuitively acceptable!) fact about independence is as follows.

Fact: Suppose X1, . . . ,Xn are independent random variables. Let k1 < k2 < .. . < km =
n. Let Y1 = h1(X1, . . . ,Xk1), Y2 = h2(Xk1+1, . . . ,Xk2), . . .Ym = hm(Xkm−1 , . . . ,Xkm). Then,
Y1, . . . ,Ym are also independent.

Remark 127. In the previous section we defined independence of events and now we
have defined independence of random variables. How are they related? We leave it to you
to check that events A1, . . . ,An are independent (according the definition of the previous
section) if and only if the random variables 1A1 , . . . ,1Am are independent (according the
definition of this section)

The next part, about conditioning on random variables and conditional densities was
not covered in class and is not included in syllabus.

Conditioning on random variables: Let X1, . . . ,Xk+! be random variables on a common
probability space. Let f (t1, . . . , tk+!) be the pmf of (X1, . . . ,Xk+!) and let g(t1, . . . , t!) be the
pmf of (Xk+1, . . . ,Xk+!) (of course we can compute g from f by summing over the first k
indices). Then, for any s1, . . . ,s! such that P{Xk+1 = s1, . . .Xm = s!} > 0, we can define
(2)

hs1,...,s!(t1, . . . , tk)= P{X1 = t1, . . . ,Xk = tk
∣∣Xk+1 = s1, . . .Xm = s!}=

f (t1, . . . , tk,s1, . . . ,s!)
g(s1, . . . ,s!)

.

It is easy to see that hs1,...,s!(·) is a pmf on Rk. It is called the conditional pmf of (X1, . . . ,Xk)
given that Xk+1 = s1, . . .Xm = s!.

Its interpretation is as follows. Originally we had random observables X1, . . . ,Xk which
had a certain joint pmf. Then we observe the values of the random variables Xk+1, . . . ,Xk+!,
say they turn out to be s1, . . . ,s!, respectively. Then we update the distribution (or pmf)
of X1, . . . ,Xk according to the above recipe. The conditional pmf is the new function
hs1,...,s!(·).

Exercise 128. Let (X1, . . . ,Xn−1) be a random vector with multinomial distribution with
parameters r,n, p1, . . . , pn. Let k < n− 1. Given that Xk+1 = s1, . . . ,Xn−1 = sn−k+1, show
that the conditional distribution of (X1, . . . ,Xk) is multinomial with parameters r′,n′, q1, . . . ,qk+1
where r′ = r− (s1 + . . .+ sn−k+1), n′ = k + 1, q j = p j/(p1 + . . .+ pk + pn) for j ≤ k and
qk+1 = pn/(p1 + . . .+ pk + pn).

This looks complicated, but is utterly obvious if you think in terms of assigning r balls
into n urns by putting each ball into the urns with probabilities p1, . . . , pn and letting Xj
denote the number of balls that end up in the jth urn.

Conditional densities Now suppose X1, . . . ,Xk+! have joint density f (t1, . . . , tk+!) and let
g(s1, . . . ,s!) by the density of (Xk+1, . . . ,Xk+!). Then, we define the conditional density of
(X1, . . . ,Xk) given Xk+1 = s1, . . . ,Xk+! = s! as

(3) hs1,...,s!(t1, . . . , tk) =
f (t1, . . . , tk,s1, . . . ,s!)

g(s1, . . . ,s!)
.

This is well-defined whenever g(s1, . . . ,s!) > 0.
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Remark 129. Note the difference between (2) and (3). In the latter we have left out the
middle term because P{Xk+1 = s1, . . . ,Xk+! = s!} = 0. In (2) the definition of pmf comes
from the definition of conditional probability of events but in (3) this is not so. We simply
define the conditional density by analogy with the case of conditional pmf. This is similar
to the difference between interpretation of pmf ( f (t) is actually the probability of an event)
and pdf ( f (t) is not the probability of an event but the density of probability near t).

Example 130. Let (X ,Y ) have bivariate normal density f (x,y) =
√

ab−c2

2π e−
1
2 (ax2+by2+2cxy)

(so we assume a > 0,b > 0,ab− c2 > 0). In the mid-term you showed that the marginal

distribution of Y is N(0, a
ab−c2 ), that is it has density g(y) =

√
ab−c2
√

2πa
e−

ab−c2
2a y2

. Hence, the
conditional density of X given Y = y is

hy(x) =
f (x,y)
g(y)

=
√

a√
2π

e−
a
2 (x+ c

a y)2
.

Thus the conditional distribution of X given Y = y is N(− cy
a , 1

a ). Compare this with mar-
ginal (unconditional) distribution of X which is N(0, b

ab−c2 ).
In the special case when c = 0, we see that for any value of y, the conditional distri-

bution of X given Y = y is the same as the unconditional distribution of X . What does this
mean? It is just another way of saying that X and Y are independent! Indeed, when c = 0,
the joint density f (x,y) splits into a product of two functions, one of x alone and one of y
alone.

Exercise 131. Let (X ,Y ) have joint density f (x,y). Let the marginal densities of X and Y
be g(x) and h(y) respectively. Let hx(y) be the conditional density of Y given X = x.

(1) If X and Y are independent, show that for any x, we have hx(y) = h(y) for all y.
(2) If hx(y) = h(y) for all y and for all x, show that X and Y are independent.

Analogous statements hold for the case of pmf.
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19. Mean and Variance

Let X be a random variable with distribution F . We shall assume that it has pmf or pdf
denoted by f .

Definition 132. The expected value (also called mean) of X is defined as the quantity
E[X ] = ∑t t f (t) if f is a pmf and E[X ] =

R +∞
−∞ t f (t)dt if f is a pdf (provided the sum or the

integral converges absolutely).

Note that this agrees with the definition we gave earlier for random variables with pmf.
it is possible to define expect value for distributions without pmf or pdf, but we shall not
do it here.

Properties of expectation: Let X ,Y be random variables both having pmf f ,g or pdf f ,g,
respectively.

(1) Then, E[aX +bY ] = aE[X ]+bE[Y ] for any a,b ∈R. In particular, for a constant
random variable (i.e., X = a with probability 1 for some a, E[X ] = a). This is
called linearity of expectation.

(2) If X ≥ Y (meaning, X(ω)≥ Y (ω) for all ω), then E[X ]≥ E[Y ]
(3) If ϕ : R→ R, then

E[ϕ(X)] =





∑
t

ϕ(t) f (t) if f is a pmf.
R +∞
−∞ ϕ(t) f (t)dt if f is a pdf.

(4) More generally, if (X1, . . . ,Xn) has joint pdf f (t1, . . . , tn) and V = T (X1, . . . ,Xn)
(here T : Rn → R), then E[V ] =

R ∞
−∞ . . .

R ∞
−∞ T (x1, . . . ,xn) f (x1, . . . ,xn)dx1 . . .dxn.

For random variables on a discrete probability space (then they have pmf), we have essen-
tially proved all these properties (or you can easily do so). For random variables with pmf,
a proper proof require a bit of work. So we shall just take these for granted. We state one
more property of expectations, its relationship to independence.

Lemma 133. Let X ,Y be random variables on a common probability space. If X and Y are
independent, then E[H1(X)H2(Y )] = E[H1(X)]E[H2(Y )] for any functions H1,H2 : R→ R
(for which the expectations make sense). In particular, E[XY ] = E[X ]E[Y ].

PROOF. Independence means that the joint density (analogous statements for pmf
omitted) of (X ,Y ) is f the form f (t,s) = g(t)h(s) where g(t) is the density of X and h(s) is
the density of Y . Hence,

E[H1(X)H2(Y )] =
Z Z

H1(t)H2(s) f (t,s)dtds =




∞Z

−∞

H1(t)g(t)dt








∞Z

−∞

H2(s)g(s)ds





which is precisely E[H1(X)]E[H2(Y )]. !
Expectation is a very important quantity. Using it, we can define several other quanti-

ties of interest.

Discussion: For simplicity let us take random variables to have densities in this discussion.
You may adapt the remarks to the case of pmf easily. The density has all the information
we need about a random variable. However, it is a function, which means that we have to
know f (t) for every t. In real life often we have random variables whose pdf is unknown
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or impossible to determine. It would be better to summarize the main features of the
distribution (i.e., the density) in a few numbers. That is what the quantities defined below
try to do.

Mean: Mean is another term for expected value.

Quantiles: Let us assume that the CDF F of X is strictly increasing and continuous. Then
F−1(t) is well defined for every t ∈ (0,1). For each t ∈ (0,1), the number Qt = F−1(t) is
called the t-quantile. For example, the 1/2-quantile, also called median is the number x
such that F(x) = 1

2 (unique when the CDF is strictly increasing and continuous). Similarly
one defines 1/4-quantile and 3/4-quantile and these are sometimes called quartiles.12

Moments: The quantity E[Xk] (if it exists) is called the kth moment of X .

Variance: Let µ = E[X ] and define σ2 := E
[
(X−µ)2]. This is called the variance of X ,

also denoted by Var(X). It can be written in other forms. For example,

σ2 = E[X2 +µ2−2µX ] (by expanding the square)

= E[X2]+µ2−2µE[X ] (by property (1) above)

= E[X2]−µ2.

That is Var(X) = E[X2]− (E[X ])2.

Standard deviation: The standard deviation of X is defined as s.d.(X) :=
√

Var(X).

Mean absolute deviation: The mean absolute deviation of X is defined as the E[|X −
med(X)|].

Coefficient of variation: The coefficient of variation of X is defined as c.v.(X) = s.d.(X)
|E[X ]| .

Covariance: Let X ,Y be random variables on a common probability space. The covari-
ance of X and Y is defined as Cov(X ,Y ) = E[(X−E[X ])(Y −E[Y ])]. It can also be written
as Cov(X ,Y ) = E[XY ]−E[X ]E[Y ].

Correlation: Let X ,Y be random variables on a common probability space. Their corre-
lation is defined as Corr(X ,Y ) = Cov(X ,Y )√

Var(X)
√

Var(Y )
.

12Another familiar quantity is the percentile, frequently used in reporting performance in competitive ex-
ams. For each x, the x-percentile is nothing but F(x). For exam scores, it tells the proportion of exam-takers who
scored less than or equal to x.
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Entropy: The entropy of a random variable X is defined as

Ent(X) =

{
−∑i f (t) log( f (ti)) if X has pmf f .
−

R
f (t) log( f (t)) if X has pdf f .

If X = (X1, . . . ,Xn) is a random vector, we can define its entropy exactly by the same
expressions, except that we use the joint pmf or pdf of X and the sum or integral is over
points in Rn.

Discussion: What do these quantities mean?

Measures of central tendency Mean and median try to summarize the distribution of X
by a single number. Of course one number cannot capture the whole distribution, so there
are many densities and mass functions that have the same mean or median. Which is
better - mean or median? This question has no unambiguous answer. Mean has excellent
mathematical properties (mainly linearity) which the median lacks (med(X +Y ) bears no
general relationship to med(X)+med(Y )). In contrast, mean is sensitive to outliers, while
the median is far less so. For example, if the average income in a village of 50 people is
1000 Rs. per month, the immigration of multi-millionaire to the village will change the
mean drastically but the median remains about the same. This is good, if by giving one
number we are hoping to express the state of a typical individual in the population.

Measures of dispersion: Suppose the average height of people in a city is 160 cm. This
could be because everyone is 160 cm exactly or because half the people are 100 cm. while
the other half are 220 cm., or alternately the heights could be uniformly spread over 150-
170 cm., etc. How widely the distribution is spread is measured by standard deviation and
mean absolute deviation. Since we want deviation from mean, E[X −E[X ]] looks natural,
but this is zero because of cancellation of positive and negative deviations. To prevent
cancellation, we may put absolute values (getting to the m.a.d, but that is usually taken
around the median) or we may square the deviations before taking expectation (giving the
variance, and then the standard deviation). Variance and standard deviation have much
better mathematical properties (as we shall see) and hence are usually preferred.

The standard deviation has the same units as the quantity. Fo example, if mean height
is 160cm measured in centimeters with a standard deviation of 10cm, and the mean weight
is 55kg with a standard deviation of 5kg, then we cannot say which of the two is less
variable. To make such a comparison we need a dimension free quantity (a pure number).
Coefficient of variation is such a quantity, as it measure the standard deviation per mean.
For the height and weight data just described, the coefficients of variation are 1/16 and 1/11,
respectively. Hence we may say that height is less variable than weight in this example.

Measures of association: The marginal distributions do not determine the joint distribu-
tion. For example, if (X ,Y ) is a point chosen at random from the unit square (with ver-
tices (0,0),(1,0),(0,1),(1,1)) then X ,Y both have marginal distribution that is uniform on
[0,1]. If (U,V ) is a point picked at random from the diagonal line (the line segment from
(0,0) to (1,1), then again U and V have marginals that are uniform on [0,1]. But the two
joint distributions are completely different. In particular, giving the means and standard
deviations of X and Y does not tell anything about possible relationships between the two.
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Covariance is the quantity that is used to measure the “association” of Y and X . Cor-
relation is a dimension free quantity that measures the same. For example, we shall see
that if Y = X , then Corr(X ,Y ) = +1, if Y = −X then Corr(X ,Y ) = −1. Further, if X and
Y are independent, then Corr(X ,Y ) = 0. In general, if an increase in X is likely to mean
an increase in Y , then the correlation is positive and if an increase in X is likely to mean a
decrease in Y then the correlation is negative.

Example 134. Let X ∼ N(µ,σ2). Recall that its density is 1
σ
√

2π e−
(x−µ)2

2σ2 . We can compute

E[X ] =
1

σ
√

2π

+∞Z

−∞

xe−
(x−µ)2

2σ2 dx = µ.

On the other hand

Var(X) =
1

σ
√

2π

+∞Z

−∞

(x−µ)2e−
(x−µ)2

2σ2 dx = σ2 1√
2π

+∞Z

−∞

u2e−
u2
2 du (substitute x = µ+σu)

= σ2 2√
2π

+∞Z

0

u2e−
u2
2 du = σ2 2

√
2√

2π

+∞Z

0

√
te−tdt (substitute t = u2/2)

= σ2 2
√

2√
2π

Γ(3/2) = σ2.

To get the last line, observe that Γ(3/2) = 1
2 Γ(1/2) and Γ(1/2) =

√
π. Thus we now have

a meaning for the parameters µ and σ2 - they are the mean and variance of the N(µ,σ2)
distribution. Again note that the mean is the same for all N(0,σ2) distributions but the
variances are different, capturing the spread of the distribution.

Exercise 135. Let X ∼ N(0,1). Show that E[Xn] = 0 if n is odd and if n is even then
E[Xn] = (n− 1)(n− 3) . . .(3)(1) (product of all odd numbers up to and including n− 1).
What happens if X ∼ N(0,σ2)?

Exercise 136. Calculate the mean and variance for the following distributions.
(1) X ∼ Geo(p). E[X ] = 1

p and Var(X) = q
p2 .

(2) X ∼ Bin(n, p). E[X ] = np and Var(X) = npq.
(3) X ∼ Pois(λ). E[X ] = λ and Var(X) = λ.
(4) X ∼ Hypergeo(N1,N2,m). E[X ] = mN1

N1+N2
and Var(X) =??.

Exercise 137. Calculate the mean and variance for the following distributions.
(1) X ∼ Exp(λ). E[X ] = 1

λ and Var(X) = 1
λ2 .

(2) X ∼ Gamma(ν,λ). E[X ] = ν
λ and Var(X) = ν

λ2 .
(3) X ∼ Unif[0,1]. E[X ] = 1

2 and Var(X) = 1
12 .

(4) X ∼ Beta(p,q). E[X ] = p
p+q and Var(X) = pq

(p+q)2(p+q+1) .

Properties of covariance and variance: Let X ,Y,Xi,Yi be random variables on a common
probability space. Small letters a,b,c etc will denote scalars.

(1) (Bilinearity): Cov(aX1 +bX2,Y )= aCov(X1,Y )+bCov(X2,Y ) and Cov(Y,aX1 +
bX2) = aCov(Y,X1)+bCov(Y,X2)

(2) (Symmetry): Cov(X ,Y ) = Cov(Y,X).
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(3) (Positivity): Cov(X ,X) ≥ 0 with equality if and only if X is a constant random
variable. Indeed, Cov(X ,X) = Var(X).

Exercise 138. Show that Var(cX) = c2Var(X) (hence sd(cX) = |c|sd(X)). Further, if X
and Y are independent, then Var(X +Y ) = Var(X)+Var(Y ).

Note that the properties of ovariance are very much like properties of inner-products in
vector spaces. In particular, we have the following analogue of the well-known inequality
for vectors (u ·v)2 ≤ (u ·u)(v ·v).

Cauchy-Schwarz inequality: If X and Y are random variables with finite variances, then
(Cov(X ,Y ))2 ≤ Var(X)Var(Y ) with equality if and only if Y = aX + b for some scalars
a,b.

If not convinced, follow the proof of Cauchy-Schwarz inequality that you have seen
for vectors (basically, note that Var(X + tY )≥ 0 for any scalar t and choose an appropriate
t to get the Cauchy-Schwarz’s inequality.

20. Makov’s and Chebyshev’s inequalities

Let X be a non-negative integer valued random variable with pmf f (k), k = 0,1,2, . . ..
Fix any number m, say m = 10. Then

E[X ] =
∞

∑
k=1

k f (k)≥
∞

∑
k=10

k f (k)≥
∞

∑
k=10

10 f (k) = 10P{X ≥ 10}.

More generally mP{X ≥ m} ≤ E[X ]. This shows that if the expected value is finite This
idea is captured in general by the following inequality.

Markov’s inequality: Let X be a non-negative random variable with finite expectation.
Then, for any t > 0, we have P{X ≥ t}≤ 1

t E[X ].

PROOF. Fix t > 0 and let Y = X1X<t and Z = X1X≥t so that X = Y + Z. Both Y and
Z are non-negative random variable and hence E[X ] = E[Y ]+ E[Z] ≥ E[Z]. On the other
hand, Z ≥ t1X≥t (why?). Therefore E[Z] ≥ tE[1X≥t ] = tP{X ≥ t}. Putting these together
we get E[X ]≥ tP{X ≥ t} as desired to show. !

Markov’s inequality is simple but surprisingly useful. Firstly, one can apply it to
functions of our random variable and get many inequalities. Here are some.

Variants of Markov’s inequality:
(1) If X is a non-negative random variable with finite pth moment, then P{X ≥ t}≤

t−pE[X p] for any t > 0.
(2) If X is a random variable with finite second moment, then E[|X − µ| ≥ t] ≤

1
t2 Var(X). [Chebyshev’s inequality]

(3) IF X is a random variable with finite exponential moments, then P(X > t) ≤
e−λtE[eλX ] for any λ > 0.

Thus, if we only know that X has finite mean, the tail probability P(X > t) must decay at
least as fast as 1/t. But if we knew that the second moment was finite we could assert that
the decay must be at least as fast as 1/t2, which is better. If E[eλX ] < ∞, then we get much
faster decay of the tail, like e−λt .
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Chebyshev’s inequality captures again the intuitive notion that variance measures the
spread of the distribution about the mean. The smaller the variance, lesser the spread. An
alternate way to write Chebyshev’s inequality is

P(|X−µ| > rσ)≤ 1
r2

where σ = s.d.(X). This measures the deviations in multiples of the standard deviation.
This is a very general inequality. In specific cases we can get better bounds than 1/r2 (just
like Markov inequality can be improved using higher moments, when they exist).

One more useful inequality we have already seen is the Cauchy-Schwarz inequality:
(E[XY ])2 ≤ E[X2]E[Y 2] or (Cov(X ,Y ))2 ≤ Var(X)Var(Y ).

21. Weak law of large numbers

Let X1,X2, . . . be i.i.d random variables (independent random variables each having
the same marginal distribution). Assume that the second moment of X1 is finite. Then,
µ = E[X1] and σ2 = Var(X1) are well-defined.

Let Sn = X1 + . . .+ Xn (partial sums) and Xn = Sn
n = X1+...+Xn

n (sample mean). Then,
by the properties of expectation and variance, we have

E[Sn] = nµ, Var(Sn) = nσ2
1, E[Xn] = µ, Var(Xn) =

σ2

n
.

In particular, s.d.(Xn) = σ/
√

n decreases with n. If we apply Chebyshev’s inequality to
Xn, we get for any δ > 0 that

P{|Xn−µ|≥ δ}≤ σ2

δ2n
.

This goes to zero as n→∞ (with δ > 0 being fixed). This means that for large n the sample
mean is unlikely to be far from µ (sometimes called “population mean”). This is consistent
with our intuitive idea that if we toss a p-coin many times, we can get a better guess of
what the value of p is.

Weak law of large numbers (Jacob Bernoulli): With the above notations, for any δ > 0,
we have

P{|Xn−µ|≥ δ}≤ σ2

δ2n
→ 0 as n→ ∞.

This is very general, in that we only assume the existence of variance. If Xk are
assumed to have more moments, one can get better bounds. For example, when Xk are
i.i.d. Ber(p), we have the following theorem.

Hoeffding’s inequality: Let X1, . . . ,Xn be i.i.d. Ber(p). Then

P{|Xn− p|≥ δ}≤ 2e−nδ2/2.

22. Monte-Carlo integration

In this section we give a simple application of WLLN. Let ϕ : [0,1]→ R be a contin-
uous function. We would like to compute I =

R 1
0 ϕ(x)dx. Most often we cannot compute

the integral explicitly and for an approximate value we resort to numerical methods. Here
is an idea to use random numbers.
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Let U1,U2, . . . ,Un be i.i.d. Unif[0,1] random variables and let X1 = ϕ(U1), . . . ,Xn =
ϕ(Un). Then, Xk are i.i.d. random variables with common mean and variance

µ =
1Z

0

ϕ(x)dx = I, σ2 := Var(X1) =
1Z

0

(ϕ(x)− I)2dx.

This gives the following method of finding I. Fix a large number N appropriately and pick
N uniform random numbers Uk, 1≤ k≤ N. Then define ÎN := 1

N ∑N
k=1 ϕ(Uk). Present ÎN as

an approximate value of I.
In what sense is this an approximation of I and why? Indeed, by WLLN P{|În− I|≥

δ}→ 0 and hence we expect În to be close to I. How large should n be? For this, we
fix two numbers ε = 0.01 and δ = 0.001 (you may change the numbers). By Chebyshev’s
inequality, observe that P{|În− I|≥ δ}→ σ2/Nδ2.

First find N so that σ2/Nδ2 < ε, i.e., N = %σ2

δ2 &. Then, the random variable ÎN is within
δ of I with probability greater than 1− ε. This is a probabilistic method, hence there is a
possibility of large error, but with a small probability. Observe that N grows proportional
to square of 1/δ. To increase the accuracy by 10, you must increase the number of samples
by a factor of 100.

One last point. To find N we need σ2 which involves computing another integral
involving ϕ which we do not know how to compute! Here we do not need the exact value
of the integral. For example, if our functions satisfies −M ≤ ϕ(x) ≤ M for all x ∈ [0,1],
then also−M≤ I≤M and hence (ϕ(x)−12

) ≤ 4M2. This means that σ2 ≤ 4M2. Therefore,

if we take N = % 4M2

δ2 & then the value of N is larger than required for the desired accuracy.
We can work with this N. Note that the dependence of of N on δ does not change.

Exercise 139. We know that
R 1

0
1

1+x2 dx = π
4 . Based on this, devise a method to find an

approximate value of π. Use any software you like to implement your method and see how
many sample you need to get an approximation to 1, 2 and 3 decimal places consistently
(consistently means with a large enough probability, say 0.9).

Exercise 140. Devise a method to approximate e and π (there are many possible integrals).

This method can be used to evaluate integrals over any interval. For instance, how
would you find

R b
a ϕ(t)dt or

R ∞
0 ϕ(t)e−tdt or

R ∞
−∞ ϕ(t)e−t2

dt where ϕ is a function on the
appropriate interval? It can also be used to evaluate multiple integrals (and consequently
to find the areas and volumes of sets). The only condition is that it should be possible
to evaluate the given function ϕ at a point x on the computer. To illustrate, consider the
problem of finding the area of a region {(x,y) : 0 ≤ x,y,≤ 1, 2x3y2 ≥ 1, x2 + 2y2 ≤ 2.3}.
It is complicated to work with such regions analytically, but given a point (x,y), it is easy
to check on a computer whether all the constraints given are satisfied.

As a last remark, how do Monte-Carlo methods compare with the usual numerical
methods? In the latter, usually a number N and a set of points x1, . . . ,xN are fixed along
with some weights w1, . . . ,wN that sum to 1. Then one presents Ĩ := ∑N

k=1 wkϕ(xk) as the
approximate value of I. Lagrange’s method, Gauss quadrature etc are of this type. Under
certain assumptions on ϕ, the accuracy of these integrals can be like 1/N as opposed to
1/
√

N in Monte-Carlo. But when those assumptions are not satisfied, Ĩ can be way off I.
One may regard this as a game of strategy as follows.

I present a function ϕ (say bounded between −1 and 1) and you are expected to give
an approximation to ϕ. Quadrature methods do a good job generically, but if I knew the
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procedure you use, then I can give a function for which your result is entirely wrong (for
example, I pick a function ϕ which vanishes at each of the quadrature points!). However,
with Monte-Carlo methods, even if I know the procedure, there is no way to prevent you
from getting an approximation of accuracy 1/

√
N. This is because neither of us know

where the points Uk will fall!

23. Central limit theorem

Let X1,X2, . . . be i.i.d. random variables with expectation µ and variance σ2. We saw
that Xn has mean µ and standard deviation σ/

√
n.

This roughly means that Xn is close to µ, within a few multiples of σ/
√

n (as shown
by Chebyshev’s inequality). Now we look at Xn with a finer microscope. In other words,
we ask for the probability that Xn is within the tiny interval [µ+ a√

n ,µ+ b√
n ] for any a < b.

The answer turns out to be surprising and remarkable!

Central limit theorem: Let X1,X2, . . . be i.i.d. random variables with expectation µ and
variance σ2. We assume that 0 < σ2 < ∞. Then, for any a < b, we have

P
{

µ+a
σ√
n
≤ Xn ≤ µ+b

σ√
n

}
→Φ(b)−Φ(a) =

1√
2π

bZ

a

e−t2/2dt.

What is remarkable about this? The end result does not depend on the distribution of
Xis at all! Only the mean and variance of the distribution were used! As this is one of
the most important theorems in all of probability theory, we restate it in several forms, all
equivalent to the above.

Restatements of central limit theorem: Let Xk be as above. Let Sn = X1 + . . .+ Xn. Let
Z be a N(0,1) random variable. Then of course P{a < Z < b} = Φ(b)−Φ(a).

(1) P{a <
√

n
σ (Xn−µ)≤ b}→Φ(b)−Φ(a) = P{a < Z < b}. Put another way, this

says that for large n, the random variable
√

n(Xn−µ)
σ has N(0,1) distribution, ap-

proximately. Equivalently,
√

n(Xn−µ) has N(0,σ2) distribution, approximately.
(2) Yet another way to say the same is that Sn has approximately normal distribution

with mean nµ and variance nσ2. That is,

P{a≤ Sn−nµ
σ
√

n
≤ b}→ P{a < Z < b}.

The central limit theorem so deep and surprising and useful. The following example
gives a hint as to why.

Example 141. Let U1, . . . ,Un be i.i.d. Uniform([−1,1]) random variables. Let Sn = U1 +
. . .+Un, let Un = Sn/n (sample mean) and let Yn = Sn/

√
n. Consider the problem of finding

the distribution of any of these. Since they are got from each other by scaling, finding the
distribution of one is the same as finding that of any other. For uniform [−1,1], we know
that µ = 0 and σ2 = 1/3. Hence, CLT tells us that

P{ a√
3

< Yn <
b√
3
}→Φ(b)−Φ(a).

or equivalently, P{a < Yn < b}→ Φ(b
√

3)−Φ(a
√

3). For large n (practically, n = 50 is
large enough) we may use this limit as a good aproximation to the probability we want.
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Why is this surprising? The way to find the distribution of Yn would be this. Using the
convolution formula n times successively, one can find the density of Sn = U1 + . . .+Un
(in principle! the actual integration may be intractable!). Then we can find the density
of Yn by another change of variable (in one dimension). Having got the density of Yn, we
integrate it from a to b to get P{a < Yn < b}. This is clearly a daunting task (if you don’t
feel so, just try it for n = 5).

The CLT cuts short all this and directly gives an approximate answer! And what is
even more surprising is that the original distribution does not matter - we only need to
know the mean and variance of the original distribution!

We shall not prove the central limit theorem in general. But we indicate how it is done
when Xk come from Exp(λ) distribution. This is optional and may be skipped.

CLT FOR EXPONETIALS. Let Xk be i.i.d. Exp(1) random variables. They have mean
µ = 1 and variance σ2 = 1. We know that (this was an exercise), Sn = X1 + . . .+ Xn has
Gamma(n,1) distribution. Its density is given by fn(t) = e−t tn−1/(n−1)! for t > 0.

Now let Yn = Sn−nµ
σ
√

n = Sn−n√
n . By a change of variable (in one-dimension) we see that

the density of Yn is given by gn(t) =
√

n fn(n+ t
√

n). Let us analyse this.

gn(t) =
√

n
1

(n−1)!
e−(n+t

√
n)(n+ t

√
n)n−1

=
√

n
nn−1

(n−1)!
e−n−t

√
n
(

1+
t√
n

)n−1

≈
√

n
nn−1

√
2π(n−1)n− 1

2 e−n+1
e−n−t

√
n
(

1+
t√
n

)n−1
(by Stirling’s formula)

=
1

√
2π(1− 1

n )n− 1
2 e1

e−t
√

n
(

1+
t√
n

)n−1
.

To find the limit of this, first observe that (1− 1
n )n− 1

2 → e−1. It remains to find the limit of

wn := e−t
√

n
(

1+ t√
n

)n−1
. Easiest to do this by taking logarithms. Recall that log(1+ t) =

t− t2

2 + t3

3 − . . .. Hence

logwn =−t
√

n+(n−1) log
(

1+
t√
n

)

=−t
√

n+(n−1)
[

t√
n
− t2

2n
+

t3

3n3/2 − . . .

]

=− t2

2
+[. . .]

where in [. . .] we have put all terms which go to zero as n→ ∞. Since there are infinitely
many, we should argue that even after adding all of them, the total goes to zero as n→ ∞.
Let us skip this step and simply conclude that logwn→−t2/2. Therefore, gn(t)→ ϕ(t) :=

1√
2π e−t2/2 which is the standard normal density.
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What we wanted was P{a < Yn < b} =
bR

a
gn(t)dt. Since gn(t)→ ϕ(t) for each t, it is

believable that
bR

a
gn(t)dt →

bR

a
ϕ(t)dt. This too needs justification but we skip it. Thus,

P{a < Yn < b}→
bZ

a

ϕ(t)dt = Φ(b)−Φ(a).

This proves CLT for the case of exponential random variables. !


